Evolutionary Remodeling of Bacterial Motility Checkpoint Control
نویسندگان
چکیده
Regulatory networks play a central role in the relationship between genotype and phenotype in all organisms. However, the mechanisms that underpin the evolutionary plasticity of these networks remain poorly understood. Here, we used experimental selection for enhanced bacterial motility in a porous environment to explore the adaptability of one of the most complex networks known in bacteria. We found that the resulting phenotypic changes are mediated by adaptive mutations in several functionally different proteins, including multiple components of the flagellar motor. Nevertheless, this evolutionary adaptation could be explained by a single mechanism, namely remodeling of the checkpoint regulating flagellar gene expression. Supported by computer simulations, our findings suggest that the specific "bow-tie" topology of the checkpoint facilitates evolutionary tuning of the cost-benefit trade-off between motility and growth. We propose that bow-tie regulatory motifs, which are widespread in cellular networks, play a general role in evolutionary adaptation.
منابع مشابه
TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein...
متن کاملMitotic checkpoint control and chromatin remodeling.
In order to maintain chromosomal stability during cell division, eukaryotic cells have evolved a number of surveillance mechanisms termed checkpoints. These checkpoints monitor the completion of essential molecular and cellular processes of one stage before entering another. The spindle checkpoint watches the bi-orientation attachment of spindle microtubules to all condensed chromosomes before ...
متن کاملMec1/Tel1 Phosphorylation of the INO80 Chromatin Remodeling Complex Influences DNA Damage Checkpoint Responses
The yeast Mec1/Tel1 kinases, ATM/ATR in mammals, coordinate the DNA damage response by phosphorylating proteins involved in DNA repair and checkpoint pathways. Recently, ATP-dependent chromatin remodeling complexes, such as the INO80 complex, have also been implicated in DNA damage responses, although regulatory mechanisms that direct their function remain unknown. Here, we show that the Ies4 s...
متن کاملThe evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes.
Genome shrinkage is a common feature of most intracellular pathogens and symbionts. Reduction of genome sizes is among the best-characterized evolutionary ways of intracellular organisms to save and avoid maintaining expensive redundant biological processes. Endosymbiotic bacteria of insects are examples of biological economy taken to completion because their genomes are dramatically reduced. T...
متن کاملThe epithelial cell cytoskeleton and intracellular trafficking. III. How is villin involved in the actin cytoskeleton dynamics in intestinal cells?
Villin plays a key role in the maintenance of the brush border organization by bundling F-actin into a network of parallel filaments. Our previous in vivo data on villin knockout mice showed that, although this protein is not necessary for the bundling of F-actin, it is important for the reorganization of the actin cytoskeleton elicited by stress conditions. We further investigated villin prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017